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  3   

Total Marks – 100 
 
SECTION 1 
 
Ten questions worth 10 marks 
Answer on the answer sheet provided 
 

 
1. Which of the following is the graph of 3 2( ) 2 3f x x x  ? 

(A)       (B) 

   
 

(C)       (D) 

   
 
 

2. For what values of x is the curve 3 2( ) 2f x x x   concave down? 

(A) 
1

6
x    (B) 

1

6
x    (C) 6x    (D) 6x   

 
3. What is the greatest value of the function 4 2cos 2y x  ? 

(A) 2  (B) 4  (C) 6  (D) 8 

 

 

4. If 14 32x  , then the value of x is  

 (A) 10  (B) 3.5  (C) 3  (D) 6 

 
 



  4   

5. The sector below has an area of 10  square units. 

What is the value of r? 

 (A) 60   (B) 60  (C) 
3


 (D) 

1

3  

 
6. The chance of a fisherman catching a legal length fish is 4 in 5. If three fish are caught at 

random, what is the probability that exactly one is of legal length? 

 (A) 
4

125
  (B) 

12

125
  (C) 

16

125
 (D) 

48

125
 

 
7. An infinite geometric series has a first term of 8 and a limiting sum of 12. What is the 

common ratio? 

 (A) 
1

6
  (B) 

1

4
  (C) 

1

3
  (D) 

1

2  
 
 
8. The displacement, x metres, from the origin of a particle moving in a straight line at any 

time (t seconds) is shown in the graph.    

 
 

When was the particle at rest? 
 

(A) 2t  , 8t   and 14t    (B)  0t    

(C) 4.5t   and 11.5t    (D)  Never 



  5   

9. If tan 2 3x   in the domain x    , the value of x is: 

 (A) 
7

,
6 6

 
   (B) 

5 11
,

6 6

 
    

(C) A and B   (D)  None of the above 

 

10. Consider the graphs of 3 2 6y x x x    and 4 8y x   as illustrated below.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The area enclosed between the curves is given by 

(A)    
44

3 2

2 2

4 8 6x dx x x xA dx
 

   



 
 

(B)    
4 4

3 2

22

4 86 xx x x dxA dx


  
 
 


 

(C) 
1 4

3 2 3 2

2 1

(4 8) ( 6 ) (4 8) ( 6 )dx dxx x x x x x x xA



 

              
 
 
 

 

(D) 
1 4

3 2 3 2

2 1

(4 8) ( 6 ) (4 8) ( 6 )dx dxx x x x x x x xA



 

              
 
 
 

 

 
 
 
 
 

End of Section 1  
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  6   

SECTION 2 
 
Attempt Questions 1116.  
All questions are of equal value (15 marks each). 
 
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. 
 

 
 
 
Question 11 (15 marks)  
 

(a) Evaluate  5 1.8 4.2

3.1 1.6




 correct to four significant figures. 2   

 

(b) Factorise 38 1p  . 2 

 

 
(c) At a fun fair, Paula and Priscilla each played the same number of rounds of a game 2 

of Shoot the Balloons. 

Paula hit the target 30% of the time which was lower than the average by 10 shots.  
Priscilla hit the target 40% of the time which was more than the average by 15 shots.  

What was the average number of successful shots for the game? 
 
 
 
 
 

Question 11 continues on Page 7  



  7   

Question 11 (continued) 
 
 
(d) In the diagram below, the equation of the line l is given by 2 4 0x y    .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
(i) Find the exact length of the interval AB. 1 

(ii) Find the gradient of AB. 1 

(iii) The equation of line m is 2 3 0x y   . 1 
Show that the line m is perpendicular to l. 

(iv) Show that m intersects l at the midpoint of segment AB. 2 

(v) Explain without any calculations why the lengths PA and PB are equal. 1 

(vi) The point ( 5,7)Q  lies on the line m.  Find the length of PQ. 1 

(vii) Explain why APBQ is a kite.  1 

(viii) Find the area of quadrilateral APBQ. 1 

 
End of Question 11  

y 

l 

 O 
x 

 

m 

M 

 

NOT TO SCALE 



  8   

Question 12 (15 marks) Use a SEPARATE writing booklet.  

 

(a) Solve 3 2 5x  and graph the solution on a number line. 3 

 
 
 
 
(b) Solve the equation 2 log( 5) log(2 7)x x    2 
 
 
 
 

(c) Evaluate  
10

1

10 3
k

k


 . 2 

 
 
 
 
(d) If x, 4 and y are successive terms in an arithmetic sequence and x, 3 and y are  

successive terms in a geometric sequence, calculate 
1 1

x y
 . 2 

 
 
 
 
(e) A bag contains one green, four blue and six red marbles.  
 

(i) Two marbles are drawn from the bag with replacement.  Find the probability  
 that two blue marbles are drawn. 1 

(ii) What is the probability that at least one of the marbles is red or green? 2 

(iii) A single marble is now removed from the bag without noting its colour 3 
and it is replaced with a green marble.   
A marble is now drawn from the bag. What is the probability that it is green? 

 

  



  9   

Question 13 (15 marks) Use a SEPARATE writing booklet.  

 
(a) Differentiate: 

(i)  2log 1e x  1 

(ii) 3 3xx e   2 

 
(b) Find: 

(i) 
3 2

dx

x 






 2 

(ii) 
2

3

3x x dx
x







 2 

 

(c) Evaluate  
1

1

3x x dx







. 2 

 
(d) The graph of ( )f x  is shown below.  Draw the graph of  f x and mark the x-values  2 

a, b and c on your graph.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(e) Consider the function 2( ) cos sinf x x x   in the domain 
3

2
x

    

(i) Find  f x . 1 

(ii) Find the x-coordinates of the stationary points of ( )y f x and  3  
determine their nature. 
  

a c b 
x 

y 

 



  10   

Question 14 (15 marks) Use a SEPARATE writing booklet.  
 
 
(a) Find the equation of the parabola with vertex ( 1,3)  and directrix 1y   . 2 
 
 

(b) Consider the function  2logey x  for 0x   

 
(i) Show that the tangent to the curve at the point P  , 2e , passes through  

the origin, O. 2 

(ii) Find the equation of the normal to the curve at P and find the point Q where  
the normal meets the y-axis. 2 

(iii) Show that the area of triangle OPQ is 
34

4

e e
square units. 1 

 

 

 

 

 

 

 

 

 
 
 
 
 
(c) (i) Draw a neat sketch of the curve 1 cos 2y x   for 0 x   .   2 

(ii) On the same diagram, sketch 
1

2
y x  for 0 x   .     1 

(iii) Explain why the x-coordinates of the intersection points of the two graphs 1 
represent the solutions to the equation 2cos 2 2x x  . 

(iv) Using the graph, determine the number of solutions to the equation   1 
2cos 2 2x x  which exist in the given domain. 

 

 

(d) The population of a rare species of beetle can be modeled by 0
ktN N e .   

An environmental stress reduced the population from 5000 to 4000 in two days. 

(i) How many beetles will there be seven days after the initial count of 5000? 2 

(ii) How many days will it take for the beetle population to fall below 250? 1 

  

x

y 

 

Q 

O 



  11   
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  12   

Question 15 (15 marks) Use a SEPARATE writing booklet.  
 

 

(a) The graph of 2( ) 1f x x   is shown.  The shaded region in the diagram is the area  
bounded by the curve, the positive x-axis, the y-axis and the line 1y  . 

 
Find the volume of the solid of revolution formed when the shaded region is rotated  2 
around the y-axis. 

 
 

 

 

 

 

 

 

 

 

 

(b) Consider the parabola 2 1y x  . 

 
(i) Find the y-coordinate of a point P on the parabola whose x-coordinate is p. 1 

(ii) Find an expression for the perpendicular distance of the point P from the line  1
2 5 4x y   in terms of p. 

(iii) Hence, or otherwise, show that the line 2 5 4x y   does not intersect the  2 

parabola 2 1y x  . 

 

 

 

Question 15 continues on Page 13  

x

y 

1

1



  13   

Question 15 (continued) 

 

(c) The graph below represents the gradient function  f x .  

Specific x-values a, b, c, d and e are as indicated in the diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(i) Justify why ( )f x  has a maximum stationary point at x c . 1 

(ii) For what value(s) of x is the graph of  y f x  increasing and concave up? 2 

(iii) What feature of the graph  y f x  exists at x a ? 1 

 

 

(d) The acceleration of a particle moving in a straight line is given by 
2

2

( 1)
a

t



.  

Initially, the particle is 2 m to the right of the origin travelling towards the origin  
at a speed of 1 m/s.  

(i) Find an expression for the velocity of the particle at time t? 2 

(ii) Show that the particle is at rest at 1t  . 1 

(iii) What is the distance travelled by the particle in the first two seconds? 2 

 

 

 

End of Question 15 

  

1 

x 

 

a b c e 
d 

 

O 



  14   

Question 16 (15 marks) Use a SEPARATE writing booklet.  
  

(a) Consider the curve 2 1y x  , 0x  .  P is the point (0,1)  and ( , )Q m n  is a point 
on the curve. 

 
 
 
 
 
 
 
 
 
 
 
 

(i) Show that the length of the interval PQ is given by  1 

4 23 4L m m    
 

(ii) Hence, find the coordinates of the point Q on the curve that is closest to P. 4 

 
 

(b) ABCD is a square of side length 2 units.  P is the midpoint of AD.  CQ is drawn  
perpendicular to PB.   

 
(i) Prove APB QBC  . 1 

(ii) Hence or otherwise, show that QC = 
4

5
 units. 2 

(iii) Show that QD CD . 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Question 16 continues on Page 15  

A B

CD 

P 

Q

x 
O

y



  15   

Question 16 (continued) 
 
 
(c) During a recent flood, the level of water in a river was measured at regular intervals starting 

from midnight. The height h metres, by which the water level exceeded normal levels was 
recorded. 
The rate at which h increased at time t, is given by 0.5( ) 0.5(1 sin )tR t e t  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(i) Deduce from the graph, the approximate time after midnight at which the 1  
water level peaked.   

(ii) Consider the table below and use Simpson’s Rule with five function values  
to estimate the area under the curve shown between 0t   and 1

33t   correct  

to two decimal places. 2 
 

t  0 
5

6
 

5

3
 

5

2
 

10

3
 

( )R t  0.5 1.061 1.645 1.544 0 

 

(iii) The town needs to be evacuated if the water rises to 4 m above the normal  1 
levels. If the water level was 0.25 m higher than the normal levels at midnight,  
was the town evacuated? 

(iv) Now, if the water level returned to normal at time p, find the value of  
0

p

R t dt




. 1 

 
End of paper 

1 2 3 4

1 

2 

O
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Mathematics Trial HSC Examination 2012 – Solutions

Section 1 

1. D 
2. A 
3. C 
4. B 
5. A 
6. B 
7. C 
8. C 
9. D 
10. C 

Section 2 

Question 11 

(a) 1.320 (4 s.f.) 

(b) 2(2 1)(4 2 1)p p p    

(c) 10% of shots = 25 
3 25 10Average

85 shots

  


 

(d) (i)  2 24 2 20 2 5AB      

(ii) 2 1

4 2ABm    

(iii) Gradient of line m = 2  
1

2 1
2

     

Gradients multiply to 1 .  
l m  . 

(iv) Midpoint of AB is  2,1M    

Sub ( 2,1) into eqn of m. 

LHS 2 2 1 3 0 RHS      . 

M lies on the lines l and m and is the 
point of intersection of the two lines. 

(v) m is the perpendicular bisector of AB.   all 
points on m are equidistant from A and B. 

PA=PB. 

(vi) 2 25 ( 10) 125 5 5PQ      . 

(vii) Diagonal PQ bisects the diagonal AB. 

(viii) 21
Area 2 5 5 5 25 u

2
     

 
 

Question 12 

(i) 3 2 5x   

5 3 2 5

8 2 2

4 1

1 4

x

x

x

x

   
   

  
    

(ii) 2log( 5) log(2 7)x x    

 

  

 

2

2

2

2

log ( 5) log(2 7)

( 5) 2 7

10 25 2 7

12 32 0

4 8 0

4, 8

8 4 log( 1)

x x

x x

x x x

x x

x x

x

x x

  

  

   

  

  



    

 

(iii)  
10

1

10 3 7 4 1 ... ( 20)
k

k


        

 10
7 20

2
65

 

 
 

(iv) 4 4 8x y x y       

3
9

3

y
xy

x
    

1 1 8

9

x y

x y xy


    

(v) 1 4 6
P(G) ; P(B) ; P(R)

11 11 11
    

(i) 4 4 16
P(BB) = 

11 11 121
   

(ii) 16 105
P(at least 1 G or R) = 1  P(BB) = 1

121 121
  

 

(iii) There is 
1

11
chance that a green marble is 

removed and 
10

11
chance that the marble 

removed is not green. 

1 1 10 2 21
P(G)

11 11 11 11 121
       

 

0 2 4-2 -1 



Question 13 

(a) (i)   
2 2

1 2
2

1 1

x
x

x x
  

 
 

(ii)  2 3 3 3 2 33 3 3 1x x xx e x e x e x      

(b) (i)    
1
23 2

3 2

dx
x dx

x


 




   

 
1
2

1
2

3 2 2
3 2

3 3

x
x C


   


 

(ii) 
2

3 2

3 1 3x x
dx dx

x x x

    
 


  

 

3
loge x C

x
    

(c)    1 1 2

1 1
3 3x x dx x x dx

 
     

13 2

1

3 1 3 1 3 2

3 2 3 2 3 2 3

x x



                    
 

(d)  

 

 

 

 

 

 

 

(e) (i)   ( ) 2cos ( sin ) cosf x x x x     

cos (2sin 1)x x    

(ii) For stationary points, ( ) 0f x   

1
2

cos (2sin 1) 0

cos 0   or   sin

3 7
     or    

2 6

x x

x x

x x
 

  
  

 

 

Test nature 
x  3 7

6
  4 3

2


 5 

( )f x  1.26 0 0.34 0 0.26
      

f(x) has a local maximum at 
7

6
x


         

and a local minimum at 
3

2
x


 . 

Question 14 

(a) Focal length 4a   

Equation is    2
1 16 3x y    

(b) (i)   
2

1 2
2

dy
x

dx x x
   . At 

2
,

dy
x e

dx e
  .   

gradient of tangent at P is 
2

e
. 

Consider gradient of OP = 
2 0 2

0e e





. 

OP is the tangent at P or the tangent 
at P passes through the origin. 

(ii) Gradient of normal = 
2

e
 . 

Equation of normal is  2
2

e
y x e     

For y-intercept, sub 0x  . 
2 24

2
2 2

e e
y


    

(iii) 
2 2

21 4 4
Area units

2 2 2

e e e
OPQ e

 
    

 
(c) (i) and (ii) 

 

 

 

 

 

 

(iii) For x-coordinates of the intersection points, 
solve the two equations simultaneously. 

1 cos 2
2

2 2cos 2

2cos 2 2

x
x

x x

x x

 

 
 

 

(iv) From the graph, there are two solutions to 
the equation 2cos 2 2x x   for 0 x   . 

(d) (i)    24000 5000 ke  

2 4 1 4
   or  ln or 0.5ln 0.8

5 2 5
ke k   

 

75000 where 0.5ln 0.8

2289.73 2dp

kN e k

N

 


 

c b a 
2

  

 

 

O

 



(ii) 250 5000   where  0.5ln 0.8kte k   
1 250

ln 26.85
5000

t
k

   

 it takes 27 days for the beetle population 
to fall below 250. 

 

Question 15 

(a) 2 21 1y x x y      

   

1 1

2

00

12
1
2

0

3

( 1)

1 0
2

3
 units

2

yV dy dyx

y
y

 

 



  

 
        

 



 
 

 

(b) (i)  y- coordinate is 2 1p  . 

(ii) 
 2 2

2 2

2 5 1 4 5 2 1

292 5

p p p p
d

    
 


 

(iii) For intersection points, solve 0d  . 

2

2

5 2 1 0

4 4 4 5 16

p p

b ac

  

       
 

0  ;  no real solutions. 

the line does not intersect the parabola. 

(c) (i) For , ( ) 0, , ( ) 0x c f x x c f x       

and for , ( ) 0x c f x   . 

 ( )f x  has a max. stationary point at x c . 

(ii) Increasing  ( ) 0f x   

Concave up  ( ) 0f x   or gradient of 
( )f x  is +ve. 

   or    a x b x e   . 

(iii) Stationary point of inflexion at x a . 

 

(d) (i)   
 2

2

1
x

t



 ;  

2

1
x C

t


 


  

At  0, 1

1 2 1

2
1

1

t x

C C

x
t

  
     


  







 

(ii) Sub 1t  ,  
2

1 0
1 1

x


  


  

 the particle is at rest at 1t  . 

(iii) Initially the velocity is negative.  It is zero at 
1t   and then it is positive. 

distance travelled is the sum of two areas. 

   

1 2

0 1

1 2

0 1

2 2
1 1

1 1

2ln( 1) 2 ln( 1)

[(2 ln 2 1) (0)] [( 2 ln 3 2) ( 2 ln 2 1)]

16
ln m   or   0.575m (3 s.f.)

9

d dt dt
t t

t t t t

               

        

         

   
 

 
 
 

 
 

Question 16 
 
(a) (i)  2( , 1)Q m m   

 22 2

2 4 2 4 2

( 0) 2

4 4 3 4

PQ m m

m m m m m

   

      
 

 

(ii) Let 4 23 4D PQ m m     

 3

4 2

1
4 6

2 3 4

dD
m m

dm m m
  

 
 

 

3

2

0 4 6 0

2 2 3 0

3 3
0, 0

2 2

dD
m m

dm

m m

m m m

   

 

    

 

Test nature: 
m 1 3

2  
2 

D  0.7 0 3.5 
    

 

D is minimum at 
3

2
m   and 

3 1
,

2 2
Q

 
   
 

 

 
(b) (i) Let APB x   

180   (angle sum of APB)

90   ( 90  is a square)

90   ( 90 )

           90 (90 )

  (as required)

APB ABP A

ABP x A ABCD

QBC ABP B

x x

ABP QBC x

     
     
     

   
   


 



(ii) In APB,  
2 2

2 2 1
2

  (Pythagoras Theorem)

= 2 1    (Given 2 and )

= 5

PB AP AB

AB AP AB

 

  

2
sin        (1)

5
1

cos        (2)
5

AB
x

PB

AP
x

PB

 

 
 

2
In ,  sin     from (1)

5
2

2 5
4

      (3)
5

QC
QBC x

BC

QC

QC

  





 

(iii) 90    (angle sum of QBC)QCB x     
   ( C=90 )QCD x     

In ,  using the Cosine Rule,QCD  

2 2 2 2. . .cos

16 4 1
4 2 2    from (2) and (3)

5 5 5
4

2

QD QC CD QC CD x

QD

  

     




 

2QD CD    

 

(c) (i)  At 3.20 am (from the graph) as this is 
the point when R(t) becomes zero and the 
water level is no longer increasing. 
(ii)  

t 0  5
6  5

3  5
2  10

3  

R(t) 0.5 1.061 1.645 1.544 0 

weight w 1 4 2 4 1 

( )w R t  0.5 4.244 3.29 6.176 0 

 
5
6Area 0.5 4.244 3.29 6.176 0
3
3.95 (2dp)

    


 

(iii) The area under the curve is the total 
increase in the height of the water from 
midnight.  

The water level peaks at 3.20 am 

Peak water level = 0.25+3.95 = 4.2 m. 

Yes, the town will need to be evacuated. 

(iv) The area under the curve R(t) represents 
the net change in the water level from 

0t  or midnight. 

At midnight, the water level was 0.25 m 
higher than normal. 

When the water level returns to the 
normal, the net change in the water level 
from midnight is 0.25. 

0
( ) 0.25

p
R t dt    

 

 

 


